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Spheres 

Using reflection positivity and the Peierls argument, we prove the existence of 
an ordered phase at sufficiently high activity for a lattice gas of hard spheres on 
the simple cubic lattice with first- and second-neighbor exclusions. 

KEY WORDS: Phase transitions; lattice gas; Peierls' argument; reflection 
positivity. 

1. I N T R O D U C T I O N  

Lattice gases with hard-core interactions have been extensively studied as 
models for phase transitions. (1) For several different lattices, (2-6) phase 
transitions have been proved to exist in lattice gases of hard spheres or 
disks with first-neighbor exclusions. The lattice gas of hard disks with 
first-neighbor exclusions on the triangular lattice has been solved exactly by 
Baxter. (7) For all of the lattices considered, the transition appears to be 
second order when only first neighbors are excluded. (1) 

Extending the range of the interaction in hard-core lattice gases to 
include second- or higher-neighbor exclusions tends to change the transi- 
tion to first order. (1'8-~3) The existence of a phase transition in lattice gas 
models with extended hard cores has been proved for the square lattice 
with first-, second-, and third-neighbor exclusions, (14) for the triangular 
lattice with exclusions extending any distance past first neighbors, (15) and 
for the body-centered cubic lattice with first- and second-neighbor exclu- 
sions.(16) 
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In the present paper we prove that an ordered phase exists at suffi- 
ciently high activity in a lattice gas of hard spheres with first- and 
second-neighbor exclusions on the simple cubic lattice. The proof uses 
reflection positivity (17,18) combined with a generalized Peierls (19) argument. 

2, REFLECTION POSlTIVITY 

Consider a simple cubic lattice A with cyclic boundaries given as 

A = ( ( a , b , c ) :  a , b , c - -  0, 1 . . . .  , 2 M -  1) (1) 

The coordinates (x, y, z) are computed modulo 2M onto 0 ~< x, y, z < 2M. 
This lattice is composed of four body-centered cubic (bcc) sublattices. One 
such sublattice is given as 

A 1 = ( (a ,b ,c )  :a ,b , c  are all even or all odd. } (2) 

The other three sublattices can be generated from A 1 by a unit translation 
in one of the three basis directions. Each square face of the unit cell in A 
has a vertex from each of the four bcc sublattices. A unit cell with center at 
r shall be called a cube C r. 

Consider next a lattice gas of hard spheres on A such that first- and 
second-neighbor sites on A are excluded from simultaneous occupancy. Let 
C be the set of allowed configurations on A. The grand canonical partition 
function is then given as 

= ~ e -H(~)/kv (3) 
~ c  

The Hamiltonian is given as H(~) = -/~]~l, where t~ is the chemical poten- 
tial and I~[ is the number of spheres in the configuration 4. For/~ > 0, the 
ground state for the system consists of a configuration in which any one of 
the four bcc sublattices is completely filled with spheres, the other three 
sublattices being vacant. In such a configuration, each cube has exactly two 
vertices occupied by spheres. 

We define reflection planes Pa -+ for 0 < a < M -  1 as Pa- = {(a, y , z ) :  
y , z  E R) and Pa+ = P~-M. Similarly, we define reflection planes P ~  and 
Pc -+ . The planes P ~  divide A into three disjoint regions: 

A + = A A  ( ( x , y , z ) : M + a < x < 2 M + a , y ,  z E N }  

A i = A f~ ( ( x , y , z ) : a  < x < M +  a, y , z  ~N} (4) 

A~ = A n (P,-  u P,+).  

There is a natural involution 

0 a : (X ,  y ,  Z) -"ff (2a - x, y, z) (5) 
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which reflects the coordinates through the reflection planes P ~ .  Clearly 
OaA ~ = Al, each bcc sublattice being mapped onto itself by 0 a. If Co + is the 
set of allowed molecular configurations on A + (and similarly for C Z and 
Ca~ then Oa C+ = Cf  and 0 a C ~ = C ~ 

For any function f :  C--~ C, we define Oof as 

(0of)(4) -- f(0= (4)) V4 ~ C (6) 

We denote 4 as a triple 4 = (4=-, 4 ~ 4~+), where 4 f  ~ Ca • and 4 ~ ~ C ~ Let 
F f  = { f :  f(4) -- f(4 ~ 4a +) V4 E C }. Then Oof(~) = f(4 ~ 4a-) if f E F f .  We 
also define a set of functions F a- in an analogous fashion. It can be shown 
that ( 1 s) 

f(4) Od~(4) > 0 if f ~ F~ + U/7. -  (7) 
~ c  

The Hamiltonian can then be written as 

H(4) = Ha + (4) + Oa H+ (4) = H a  (4) + OaHa-(4) (8) 

where Ha • ~ Fa x are given as 

Ha + (4)= Ha(42,4a + ) - Ha(42)/2  (9) 
Ha- (4)= Ha(4a-,42) - Ha(42)/2  

Since the average value of a function f :  C ~ C is given as 

( f )  = z - l  E f(4)e -H(~)/kr (10) 
~ c  

then Eqs. (8) and (10) give 

(fOol) =Z- '  x G+-(4) OaG+-(4) (I1) 
~ c  

where G + (4)=f(4)exp[-Ha+-(4) /kT] .  I f f  E F + U F~-, then Eqs. (7) and 
(11) yield 

(f0of } > 0 Vf ~ Fa + U F a- (12) 

It then follows by a standard Cauchy-Schwartz proof that {~8) 

I(fg)12<(]oof)(gOag) V f ~ F f ,  gE U (13) 

Equation (13) will be used in the development of Section 3 to obtain an 
upper bound for the probability of the occurrence of other than a ground 
state configuration about a cube in A. 

This bound will then be used in Section 4 to prove the existence of an 
ordered phase in the model at sufficiently large activity, z = exp(Iz/kT). 
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3. PROBABILITY OF THE OCCURRENCE OF DISORDERED CUBES 

If, in a configuration ~ ~ C a cube Cr has two vertices occupied by a 
sphere, the cube is said to be a ground state cube. Otherwise the cube is said 
to be a disordered cube. 

Let Qr be the projection onto configurations in which C r is a disor- 
dered cube; that is, 

1 if Cr(~ ) is a disordered cube 

Q~(~) = 0 otherwise 
(14) 

Let L be any nonempty set of cubes. Define 

Q(L) = I-I Q~(~) (15) 
r @ L  

The probability PL that L is a set of disordered cubes is then bounded as 
PL < gilt, where 

g = mLax ( O ( Z ) )  ~/tLt (16) 

Since L = L j  UL~ +, where L + = L O ( A ~  UA~ then Q(L)= 
Q+(L)Q- (L ) ,  where Q+-(L)= Q(Lf) .  Since Q+ ~ F + and Q -  ~ F - ,  

Eq. (13) gives 

( Q)2 <~ ( a +Oa o + )(  O -Oa Q - ) (17) 

Let 

I Q~/fcf if ILl ~ 0 

f ( a ) =  1 if I L l = 0  
(18) 

Then Eq. (17) becomes 

f (  Q ) <<. f (  Q + OaQ + )ILLI/tLI f (  Q -  OaQ- ) ILjl/ILI (19) 

If Lm maximizes f (Q) ,  then L m also maximizes f (  Q § 0 a Q + ). 
(Proof by contradiction.) Hence if r E L m, then Oar ~ L m as well. But since 
this is true for 0 defined as a reflection through any pair of planes 
P ~ , P ~ , P c  • , then L m contains all the cubes in A. Hence IZml = 8M 3. 

Let H t = - I~i/8 be the Hamiltonian restricted to a cube with i spheres 
at its vertices, where i = 0, 1, or 2. Then, for/~ > 0, 

g < (98M3(e-H'/kr)aM3) (20) 

where the factor 98M3 is the maximum number of configurations about the 
8M 3 cubes. Since N > z zg3, then 

g < 9z -t/8 = 9exp( -1~ /8kT)  (21) 
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Hence for/~ > O, g-~O as T o O .  This bound on g will be used in the next 
section to prove the existence of an ordered phase in the model for 
sufficiently high activity z. 

4. P E I E R L S '  A R G U M E N T  

Since the notion of a contour is central to the Peierls argument, we 
shall now define what we shall mean by a contour in a configuration. A 
disordered cube in a configuration shall be said to be a contour segment. 
Two contour segments are said to be connected if they share a common 
face. A contour is said to be closed if each of its unconnected faces is 
shared by a ground state cube. 

We showed in Section 3 that at sufficiently large activity z, the 
probability is high that a cubic region in a configuration is a ground state 
cube. We shall now use the Peierls argument to show that if a cube Cr(~) is 
a ground state cube, then at sufficiently large z it is highly probable that 
another cube, Cr,(~ ), at an arbitrary position r', is also a ground state cube 
belonging to the same ground state as Cr(~). For z > 1, there are four 
translationally related ground states in which one of the four bcc sublattices 
is completely occupied by spheres. 

Since in Section 3 we proved the probability a given cube is disordered 
is less than g, then the joint probability that Cr(~ ) is a ground state cube 
and C~,(~) is a disordered cube is less than g as well. Because of the first- 
and second-neighbor exclusions, a ground state cube cannot share an edge 
or a side with a ground state cube belonging to a different ground state. As 
a consequence, if Cr(~) and C~,(~) are ground state cubes belonging to 
different ground states, then either C~(~) or C/(~) must be surrounded by a 
closed contour composed of ILl >/ 18 segments. The joint probability that 
C~(~) is a ground state cube and C/(~) is either a disordered cube or a 
ground state cube belonging to a different ground state than does Cr(~) is 
then less than 

h = g + ~ gI*'In(ILI)S(ILI) (22) 
ILl > 18 

where an upper bound to g is given by Eq. (21). Here n([LI) is the 
maximum number of contours composed of ILl segments which can be 
generated beginning at a certain cube C~0, and S([L]) is the maximum 
number of cubes enclosed by the contour L; that is, the maximum number 
of cubes Q0 which need be considered for beginning a contour which 
encloses either C~ or C/. 

To obtain an upper bound to n(jL]), begin the contour with Cro 
together with any segments to which it is connected (through a face). This 
can be done in 56 ways if Cr0 is vacant and in 53 �9 23. 8 ways if Cro contains 
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one sphere. The factor 5 results since five types of (disordered) cube can 
share a face with a vacant face of Cr0. The factor 2 results since an 
occupied face of Cr0 can be shared either by a (fixed) disordered cube or by 
no disordered cube. The factor 8 results since there are eight ways to realize 
a cube occupied by one sphere. Hence there are 189.53 ways to begin the 
contour in this fashion. 

Number successively the cubes of A. To continue the contour, add any 
new segments attached to the segment of the growing contour which has 
the lowest number associated with it. This can be done in at most 55 ways. 
The process is terminated when the growing contour contains ILl segments. 
Hence n(IL[) < 189. 5 3. 5 5(ILl-I). 

Since at most three sides of a given segment are not connected to other 
segments, then an upper bound to S(ILL) is given as twice the volume of a 
sphere having a surface area equal to one half the surface area of ILl cubes, 
where the volume of a cubic segment is taken as the unit of volume. A 
simple calculation gives S( IZ[)<  (3/~r)'/21LI 3/2. Equation (22) then be- 
c o m e s  

h < f ( z ) = 9 z - 1 / 8 +  ~,, 81LI3/2(9.55z-~/8) ILl (23) 
ILl >t 18 

which converges if z > 98 �9 54~ 
The joint probability P(z) that Cr(~) and C~,(~) are both ground state 

cubes belonging to the same ground state is then bounded as 

P(z) > (1 - 9z-1/8)(1 - f(z)) (24) 

Let z 0 be the positive real solution of the equation 

(1 - 9Zo'/8)(1 - f (zo)  ) = 1/2 (25) 

If z > z o, then P(z) > 1/2, and an ordered phase exists in which one bcc 
sublattice of the simple cubic lattice is predominantly occupied by spheres. 
We have therefore proved the existence of an ordered phase in the model 
for sufficiently large activity z. 

Since four translationally related Gibbs states correspond to this 
ordered phase, and since the Gibbs state for such systems is unique at low 
activity, then there is an order-disorder  transition in the model/2~ 
(Numerical estimates (9~ indicate that the transition is probably first order 
and occurs at an activity z ~ 1.6.) 
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